/* * @BEGIN LICENSE * * myscf by Psi4 Developer, a plugin to: * * Psi4: an open-source quantum chemistry software package * * Copyright (c) 2007-2016 The Psi4 Developers. * * The copyrights for code used from other parties are included in * the corresponding files. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * @END LICENSE */ #include "psi4/psi4-dec.h" #include "psi4/liboptions/liboptions.h" #include "psi4/libpsio/psio.hpp" #include "psi4/libmints/wavefunction.h" #include "psi4/libmints/mintshelper.h" #include "psi4/libmints/matrix.h" #include "psi4/libmints/vector.h" #include "psi4/libmints/basisset.h" #include "psi4/libmints/molecule.h" #include "psi4/lib3index/dftensor.h" #include "psi4/libqt/qt.h" namespace psi{ namespace myscf { extern "C" PSI_API int read_options(std::string name, Options& options) { if (name == "MYSCF"|| options.read_globals()) { /*- The amount of information printed to the output file -*/ options.add_int("PRINT", 1); } return true; } extern "C" PSI_API SharedWavefunction myscf(SharedWavefunction ref_wfn, Options& options) { int print = options.get_int("PRINT"); /* Your code goes here */ outfile->Printf("\n\n"); outfile->Printf( " *******************************************************\n"); outfile->Printf( " * *\n"); outfile->Printf( " * myscf *\n"); outfile->Printf( " * *\n"); outfile->Printf( " * A restricted Hartree-Fock plugin to Psi4 *\n"); outfile->Printf( " * *\n"); outfile->Printf( " * Eugene DePrince *\n"); outfile->Printf( " * *\n"); outfile->Printf( " *******************************************************\n"); // make sure we are running in c1 symmetry if ( ref_wfn->nirrep() > 1 ) { throw PsiException("plugin myscf only works with c1 symmetry. Set symmetry c1 in the molecule group in your input file.",__FILE__,__LINE__); } // grab the one-electron integrals from MintsHelper: std::shared_ptr<MintsHelper> mints (new MintsHelper(ref_wfn)); // one-electron kinetic energy integrals std::shared_ptr<Matrix> T = mints->so_kinetic(); // one-electron potential energy integrals std::shared_ptr<Matrix> V = mints->so_potential(); // overlap integrals std::shared_ptr<Matrix> S = mints->so_overlap(); // build the core hamiltonian std::shared_ptr<Matrix> h = (std::shared_ptr<Matrix>)(new Matrix(T)); h->add(V); // grab the molecule from the wavefunction that was passed into the plugin std::shared_ptr<Molecule> mol = ref_wfn->molecule(); // get primary basis: std::shared_ptr<BasisSet> primary = ref_wfn->get_basisset("ORBITAL"); // total number of basis functions int nso = primary->nbf(); // get auxiliary basis: std::shared_ptr<BasisSet> auxiliary = ref_wfn->get_basisset("DF_BASIS_SCF"); // total number of auxiliary basis functions int nQ = auxiliary->nbf(); // grab some input options double e_convergence = options.get_double("E_CONVERGENCE"); double d_convergence = options.get_double("D_CONVERGENCE"); int maxiter = options.get_int("MAXITER"); // use the molecule to determine the total number of electrons int charge = mol->molecular_charge(); int nelectron = 0; for (int i = 0; i < mol->natom(); i++) { nelectron += (int)mol->Z(i); } nelectron -= charge; // this code only works for closed shells if ( nelectron % 2 != 0 ) { throw PsiException("plugin myscf only works for closed shells",__FILE__,__LINE__); } // the number of alpha electrons int na = nelectron / 2; outfile->Printf("\n"); outfile->Printf(" No. basis functions: %5i\n",nso); outfile->Printf(" No. auxiliary basis functions: %5i\n",nQ); outfile->Printf(" No. electrons: %5i\n",nelectron); outfile->Printf(" e_convergence: %10.3le\n",e_convergence); outfile->Printf(" d_convergence: %10.3le\n",d_convergence); outfile->Printf(" maxiter: %5i\n",maxiter); outfile->Printf("\n"); outfile->Printf("\n"); // allocate memory for coefficients, density, fock matrix std::shared_ptr<Matrix> Ca = (std::shared_ptr<Matrix>)(new Matrix(nso,nso)); std::shared_ptr<Matrix> Da = (std::shared_ptr<Matrix>)(new Matrix(nso,nso)); std::shared_ptr<Matrix> Fa = (std::shared_ptr<Matrix>)(new Matrix(nso,nso)); // construct the three-index integrals // since we want the SO-basis integrals, it is fine to pass empty Ca matrix // similarly, the number of active vs inactive orbitals isn't really important here. std::shared_ptr<DFTensor> DF (new DFTensor(primary,auxiliary,Ca,na,nso-na,na,nso-na,options)); std::shared_ptr<Matrix> Qso = DF->Qso(); double ** Qp = Qso->pointer(); // allocate memory for eigenvectors and eigenvalues of the overlap matrix std::shared_ptr<Matrix> Sevec ( new Matrix(nso,nso) ); std::shared_ptr<Vector> Seval ( new Vector(nso) ); // build S^(-1/2) symmetric orthogonalization matrix S->diagonalize(Sevec,Seval); for (int mu = 0; mu < nso; mu++) { Seval->pointer()[mu] = 1.0 / sqrt(Seval->pointer()[mu]); } std::shared_ptr<Matrix> Shalf = (std::shared_ptr<Matrix>)( new Matrix(S) ); double ** sp = Shalf->pointer(); // transform Seval back to nonorthogonal basis for (int mu = 0; mu < nso; mu++) { for (int nu = 0; nu < nso; nu++) { double dum = 0.0; for (int i = 0; i < nso; i++) { dum += Seval->pointer()[i] * Sevec->pointer()[nu][i] * Sevec->pointer()[mu][i]; } sp[mu][nu] = dum; } } // form F' = ST^(-1/2) F S^(-1/2), where F = h Fa->copy(h); std::shared_ptr<Matrix> Fprime ( new Matrix(Fa) ); double ** fp = Fa->pointer(); double ** fpp = Fprime->pointer(); for (int i = 0; i < nso; i++) { for (int j = 0; j < nso; j++) { double dum = 0.0; for (int mu = 0; mu < nso; mu++) { for (int nu = 0; nu < nso; nu++) { dum += fp[mu][nu] * sp[mu][i] * sp[nu][j]; } } fpp[i][j] = dum; } } // allocate memory for eigenvectors and eigenvalues of F' std::shared_ptr<Matrix> Fevec ( new Matrix(nso,nso) ); std::shared_ptr<Vector> Feval ( new Vector(nso) ); // diagonalize F' to obtain C' Fprime->diagonalize(Fevec,Feval,ascending); // Find C = S^(-1/2)C' double ** cp = Ca->pointer(); for (int mu = 0; mu < nso; mu++) { for (int i = 0; i < nso; i++) { double dum = 0.0; for (int nu = 0; nu < nso; nu++) { dum += sp[nu][mu] * Fevec->pointer()[nu][i]; } cp[mu][i] = dum; } } // Construct density from C double ** dp = Da->pointer(); for (int mu = 0; mu < nso; mu++) { for (int nu = 0; nu < nso; nu++) { double dum = 0.0; for (int i = 0; i < na; i++) { dum += cp[mu][i] * cp[nu][i]; } dp[mu][nu] = dum; } } // initial energy, E = D(H+F) + Enuc double e_nuc = mol->nuclear_repulsion_energy({0.0,0.0,0.0}); double e_current = e_nuc; e_current += Da->vector_dot(h); e_current += Da->vector_dot(Fa); // SCF iterations double e_last = 0.0; double dele = 0.0; double deld = 0.0; outfile->Printf("\n"); outfile->Printf(" Guess energy: %20.12lf\n",e_current); outfile->Printf("\n"); outfile->Printf(" ==> Begin SCF Iterations <==\n"); outfile->Printf("\n"); outfile->Printf(" "); outfile->Printf(" Iter "); outfile->Printf(" energy "); outfile->Printf(" dE "); outfile->Printf(" dD "); outfile->Printf("\n"); int iter = 0; // intermediate tensor for JK construction std::shared_ptr<Vector> JKI (new Vector(nso*nso*nQ) ); double * Ip = JKI->pointer(); do { e_last = e_current; // form J for (int Q = 0; Q < nQ; Q++) { double dum = 0.0; for (int lam = 0; lam < nso; lam++) { for (int sig = 0; sig < nso; sig++) { dum += dp[lam][sig] * Qp[Q][lam*nso+sig]; } } Ip[Q] = dum; } for (int mu = 0; mu < nso; mu++) { for (int nu = 0; nu < nso; nu++) { double dum = 0.0; for (int Q = 0; Q < nQ; Q++) { dum += Ip[Q] * Qp[Q][mu*nso+nu]; } fp[mu][nu] = 2.0 * dum; } } // form k for (int nu = 0; nu < nso; nu++) { for (int sig = 0; sig < nso; sig++) { for (int Q = 0; Q < nQ; Q++) { double dum = 0.0; for (int lam = 0; lam < nso; lam++) { dum += dp[lam][sig] * Qp[Q][lam*nso+nu]; } Ip[nu*nso*nQ+sig*nQ+Q] =dum; } } } for (int mu = 0; mu < nso; mu++) { for (int nu = 0; nu < nso; nu++) { double dum = 0.0; for (int sig = 0; sig < nso; sig++) { for (int Q = 0; Q < nQ; Q++) { dum += Ip[nu*nso*nQ+sig*nQ+Q] * Qp[Q][mu*nso+sig]; } } fp[mu][nu] -= dum; } } // form F = h + J - K Fa->add(h); // current energy, E = D(H+F) + Enuc e_current = e_nuc; e_current += Da->vector_dot(h); e_current += Da->vector_dot(Fa); // dele dele = fabs(e_last - e_current); // form F' = ST^(-1/2) F S^(-1/2) for (int i = 0; i < nso; i++) { for (int j = 0; j < nso; j++) { double dum = 0.0; for (int mu = 0; mu < nso; mu++) { for (int nu = 0; nu < nso; nu++) { dum += fp[mu][nu] * sp[mu][i] * sp[nu][j]; } } fpp[i][j] = dum; } } // diagonalize F' to obtain C' Fprime->diagonalize(Fevec,Feval,ascending); // Find C = S^(-1/2)C' for (int mu = 0; mu < nso; mu++) { for (int i = 0; i < nso; i++) { double dum = 0.0; for (int nu = 0; nu < nso; nu++) { dum += sp[nu][mu] * Fevec->pointer()[nu][i]; } cp[mu][i] = dum; } } // Construct density from C deld = 0.0; for (int mu = 0; mu < nso; mu++) { for (int nu = 0; nu < nso; nu++) { double dum = 0.0; for (int i = 0; i < na; i++) { dum += cp[mu][i] * cp[nu][i]; } double dum2 = dp[mu][nu] - dum; deld += dum2*dum2; dp[mu][nu] = dum; } } deld = sqrt(deld); outfile->Printf(" %5i %20.12lf %20.12lf %20.12lf\n",iter,e_current,dele,deld); iter++; if ( iter > maxiter ) break; }while(dele > e_convergence || deld > d_convergence ); if ( iter > maxiter ) { throw PsiException("Maximum number of iterations exceeded!",__FILE__,__LINE__); } outfile->Printf("\n"); outfile->Printf(" SCF iterations converged!\n"); outfile->Printf("\n"); outfile->Printf(" * SCF total energy: %20.12lf\n",e_current); Process::environment.globals["SCF TOTAL ENERGY"] = e_current; // Typically you would build a new wavefunction and populate it with data // (note this is just the original wavefunction passed into the module) return ref_wfn; } }} // End namespaces